Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Sci Rep ; 14(1): 8580, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615124

RESUMO

Underwater explosions (UNDEX) generate shock waves that interact with the air-water interface and structures, leading to the occurrence of rarefaction waves and inducing cavitation phenomena. In deep-water explosions, complex coupling relationships exist between shock wave propagation, bubble motion, and cavitation evolution. The shock wave initiates the formation of cavitation, and their growth and collapse are influenced by the pressure field. The collapsing bubbles generate additional shock waves and fluid motion, affecting subsequent shock wave propagation and bubble behavior. This intricate interaction significantly impacts the hydrodynamic characteristics of deep-water explosions, including pressure distribution, density, and phase changes in the surrounding fluid. In this paper, we utilize a two-fluid phase transition model to capture the evolution of cavitation in deep-water explosions. Our numerical results demonstrate that the introduction of a two-phase vapor-liquid phase change model is necessary to accurately capture scenarios involving prominent evaporation or condensation phenomena. Furthermore, we find that the cavitation produced by the same charge under different explosion depths exhibits significant differences, as does the peak value of cavitation collapse pressure. Similarly, the cavitation produced by different charge quantities under the same explosion depth varies, and the relationship between cavitation volume and charge quantity is not a simple linear increase. The research methods and results presented in this paper provide an important reference for studying the dynamic characteristics of deep-water explosions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38607228

RESUMO

Bisphenol compounds [bisphenol A (BPA), etc.] are one class of the most important and widespread pollutants in food and environment, which pose severe endocrine disrupting effect, reproductive toxicity, immunotoxicity, and metabolic toxicity on humans and animals. Simultaneous rapid determination of BPA and its analogues (bisphenol S, bisphenol AF, etc.) with extraordinary potential resolution and sensitivity is of great significance but still extremely challenging. Herein, a series of single-atom catalysts (SACs) were synthesized by anchoring different metal atoms (Mg, Co, Ni, and Cu) on N-doped carbon materials and used as sensing materials for simultaneous detection of bisphenols with similar chemical structures. The Mg-based SAC enables the potential discrimination and simultaneous rapid detection of multiple bisphenols, showing outstanding analytical performances, outperforming all other SACs and traditional electrode materials. Our experiments and density functional theory calculations show that pyrrolic N serves as the adsorption site for the adsorption of bisphenols and the Mg atom serves as the active site for the electrocatalytic oxidation of bisphenols, which play a synergistic role as dual active centers in improving the sensing performance. The results of this work may pave the way for the rational design of SACs as advanced sensing and catalytic materials.

3.
Sci Total Environ ; 922: 171393, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431175

RESUMO

N,N'-substituted p-phenylenediamines (PPDs) are widely used antioxidants in rubber tires, which could be released and accumulated in road dusts with rubber tires wear. As ozonation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone (6PPD-Q) exhibited higher toxicity to coho salmon. However, studies on their environmental behaviors are still limited. Road dust is the major medium PPDs exist, which significantly affects the levels of PPDs in other mediums, especially surface water and particulate matter. In this study, road dust samples were collected in 55 major cities of China to explore the distribution characteristics of PPDs and 6PPD-Q. The concentrations of total PPDs (ΣPPDs) and 6PPD-Q in urban trunk road dust samples were in the ranges of 7.90-727 and 3.00-349 ng/g, with median concentrations of 68 and 49 ng/g, respectively. 6PPD and 6PPD-Q are the dominant components in most road dusts. The functional region-dependent pollution characteristics of PPDs and 6PPD-Q give the first finding that urban tunnel road was the highly polluted region, followed by urban trunk roads. Suburban road dusts had a lower pollution level. Moreover, the estimated daily intake (EDI) of PPDs and 6PPD-Q for children was much higher than adults.


Assuntos
Monitoramento Ambiental , Borracha , Adulto , Criança , Humanos , Antioxidantes , Poeira/análise , Quinonas
4.
Sci Total Environ ; 923: 171372, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431168

RESUMO

Chlorinated paraffins (CPs) are widely produced chemicals. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were listed as Persistent Organic Pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. The present study explored the developmental toxicity and metabolic disruption caused by SCCPs and MCCPs in zebrafish (Danio rerio) larvae. CPs exposure at environmentally relevant levels caused no obvious phenotypic changes with zebrafish larvae except that the body length shortening was observed after exposure to CPs at 1-200 µg/L for 7 day post fertilization. A further metabolomic approach was conducted to explore the early biological responses of developmental toxicity induced by CPs at low dose (1, 5, and 10 µg/L). The results of metabolic disorder, pathway analysis and chronic values indicated that, compared with SCCPs, MCCPs exhibited more risks to zebrafish larvae at low doses. Lipid metabolism was markedly affected in SCCPs exposure group, whereas MCCPs primarily disturbed lipid metabolism, amino acid, and nucleotide metabolisms. Compare with SCCPs, the relatively higher lipid solubility, protein affinity and metabolic rate of MCCPs can probably explain why MCCP-mediated metabolic disruption was significantly higher than that of SCCP. Notably, SCCPs and MCCPs have the same potential to cause cancer, but no evidence indicates the mutagenicity. In summary, our study provides insight into the potential adverse outcome for SCCP and MCCP at low doses.


Assuntos
Hidrocarbonetos Clorados , Peixe-Zebra , Animais , Parafina/toxicidade , Parafina/análise , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Larva , Monitoramento Ambiental/métodos , China
5.
World Neurosurg ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531472

RESUMO

OBJECTIVE: The current study aimed to assess and rank the comparative efficacy of different nonoperative treatments on Cobb angle, angle of trunk rotation, and quality of life for mild-to-moderate adolescent idiopathic scoliosis. METHODS: A comprehensive search of databases, including Medline, The Cochrane Library, PubMed, EMBASE, and Web of Science spanning all previous years up to January 1, 2024. The included studies were evaluated for literature quality according to Cochrane Handbook criteria, and a network meta-analysis was performed using STATA 14.0 statistical software. RESULTS: Twenty randomized controlled trials met all inclusion criteria and were analyzed. Schroth exercise and scoliosis-specific exercise combined with brace treatments had a significant positive effect on Cobb angle and quality of life. For angle of trunk rotation, Schroth exercise and Schroth exercise combined with brace treatments prove more effective compared to the control group. On surface-under-the-cumulative-ranking-curve analysis, Schroth exercise combined with brace treatment had the highest likelihood for reducing Cobb angle (P-score = 0.899), angle of trunk rotation (0.82), and improving quality of life (0.828). CONCLUSIONS: Although most conservative treatments had benefits for mild-to-moderate adolescent idiopathic scoliosis, the most optimal programs were those that included (1) at least 10 weeks of approximately 60-minute Schroth exercise sessions twice a week and (2) wearing the brace for 23 hours every day throughout the treatment period.

6.
Se Pu ; 42(2): 176-184, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38374598

RESUMO

Short-chain chlorinated paraffins (SCCPs) are an emerging class of persistent organic pollutants (POPs) that are widely detected in environmental matrices and human samples. Because of their environmental persistence, long-range transport potential, bioaccumulation potential, and biotoxicity, SCCPs pose a significant threat to human health. In this study, metabolomics technology was applied to reveal the metabolomic interference in human normal hepatic (L02) cells after exposure to low (1 µg/L), moderate (10 µg/L), and high (100 µg/L) doses of SCCPs. Principal component analysis (PCA) and metabolic effect level index (MELI) values showed that all three SCCP doses caused notable metabolic perturbations in L02 cells. A total of 72 metabolites that were annotated by MS/MS and matched with the experimental spectra in the Human Metabolome Database (HMDB) or validated by commercially available standards were selected as differential metabolites (DMs) across all groups. The low-dose exposure group shared 33 and 36 DMs with the moderate- and high-dose exposure groups, respectively. The moderate-dose exposure group shared 46 DMs with the high-dose exposure group. In addition, 33 DMs were shared among the three exposure groups. Among the 72 DMs, 9, 9, and 45 metabolites participated in the amino acid, nucleotide, and lipid metabolism pathways, respectively. The results of pathway enrichment analysis showed that the most relevant metabolic pathways affected by SCCPs were the lipid metabolism, fatty acid ß-oxidation, and nucleotide metabolism pathways, and that compared with low-dose exposure, moderate- and high-dose SCCP exposures caused more notable perturbations of these metabolic pathways in L02 cells. Exposure to SCCPs perturbed glycerophospholipid and sphingolipid metabolism. Significant alterations in the levels of phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins indicated SCCP-induced biomembrane damage. SCCPs inhibited fatty acid ß-oxidation by decreasing the levels of short- and medium-chain acylcarnitines in L02 cells, indicating that the energy supplied by fatty acid oxidation was reduced in these cells. Furthermore, compared with low- and moderate-dose SCCPs, high-dose SCCPs produced a significantly stronger inhibition of fatty acid ß-oxidation. In addition, SCCPs perturbed nucleotide metabolism. The higher hypoxanthine levels observed in L02 cells after SCCP exposures indicate that SCCPs may induce several adverse effects, including hypoxia, reactive oxygen species production, and mutagenesis in L02 cells.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/toxicidade , Parafina/análise , Espectrometria de Massas em Tandem , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental/métodos , Ácidos Graxos , Nucleotídeos , Hepatócitos/química , China
7.
Water Res ; 250: 121076, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171178

RESUMO

Rapid urbanization accelerates the release of anthropogenic heavy metals from local to wider water systems, posing a serious threat to aquatic ecosystems and public health. The characteristics of trace elements were investigated to evaluate the environmental status of surface water in 40 cities of China. The concentrations of 22 elements in surface water ranged from 7.00 × 10-4 to 4.37 × 105 µg/L. The water quality can be classified as "excellent" except Songhuajiang. The levels of As, Cd, Cr, Pb, and Hg are all within the limits permitted by national drinking water quality standards. An obvious regional distribution characteristic was observed, with concentrations of Zn, Mn, Ni, Cu, Co, U, and Cr higher in surface water collected in the north than in the south, while the trends for Cd, Tl, and As are opposite. Notably, Tl shows significant geographical divergences, with the level of surface water collected from the south nine times higher than that from the north. The regional distribution of the mineral, industrial, or agricultural activity might be responsible for the south-to-north difference of these elements. The hazard index (HI) and total cancer risk (TCR) through oral or dermal contact with water-related heavy metals were further calculated. The average HI was 0.54 in the north and 0.29 in the south for adults, while HI for children was relatively higher. The value was 1.01 and 0.55 in the north and south, respectively. TCR in the north is 2.58 × 10-4 and mainly contributed by Cr (88.1 %), while TCR in the south is 4.48 × 10-5 and mainly contributed by As (98.4 %). The research results can provide essential data for effective water resources management and human health protection in China.


Assuntos
Metais Pesados , Oligoelementos , Criança , Adulto , Humanos , Monitoramento Ambiental/métodos , Oligoelementos/análise , Ecossistema , Cádmio , Medição de Risco , Metais Pesados/análise , China , Receptores de Antígenos de Linfócitos T
8.
Sci Total Environ ; 912: 168515, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37977390

RESUMO

The trace elements present in breast milk play a vital role in the growth and development of infants. Nevertheless, numerous studies have reported the presence of toxic metal contamination in breast milk from various countries and regions, which poses potential risks to breastfed infants. This article aimed to investigate the characteristics of trace elements in breast milk and explore the relationship between breast milk and diet in Dalian, a coastal city in northeastern China. Breast milk samples and representative local food samples were collected from Dalian for research. The results revealed that 57 % of breast milk samples significantly exceeded the WHO safety limit (0.6 µg/L) for arsenic, with a measured mean value of 0.96 µg/L. Moreover, the levels of chromium (mean value: 2.63 µg/L) in 34 % of breast milk samples exceed the WHO recommended safety level (chromium: 1.5 µg/L). Aquatic foods accounted for 60 % to 90 % of the total intake of arsenic, cadmium, vanadium, mercury, and lead. The Spearman correlation analysis demonstrated strong positive correlations among breast milk metal elements, including copper-zinc (r = 0.68) and nickel­chromium (r = 0.89). Furthermore, the food-to-milk accumulation factors (FMAF) of strontium, nickel, arsenic, vanadium, cadmium, and mercury were relatively low (median values <0.005). While the FMAF values for chromium and lead were higher, with median values of 0.038 and 0.07, respectively. The results indicated potential risks of the toxic metal arsenic in breast milk from Dalian, China for breastfed infants. Therefore, continuous monitoring of breast milk for toxic metals and foodborne contamination is necessary.


Assuntos
Intoxicação por Arsênico , Arsênio , Mercúrio , Metais Pesados , Oligoelementos , Lactente , Feminino , Humanos , Cádmio/análise , Arsênio/análise , Leite Humano/química , Níquel/análise , Oligoelementos/análise , Vanádio/análise , Mercúrio/análise , Cromo/análise , Intoxicação por Metais Pesados , Ingestão de Alimentos , Metais Pesados/análise
9.
J Environ Sci (China) ; 136: 451-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923455

RESUMO

Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.


Assuntos
Dieta , Ecossistema , Oligoelementos , Animais , Humanos , Dieta/efeitos adversos , População do Leste Asiático , Metais/análise , Medição de Risco , Oligoelementos/análise
10.
Sci Total Environ ; 905: 166886, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37678537

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and Chlorinated PAHs (Cl-PAHs) are ubiquitous environmental contaminants. The toxicological information of anthracene (Ant) and its chlorinated derivatives is quite limited. In this study, an integrated metabolomic and transcriptomic analysis approach was adopted to assess the toxic effects triggered by Ant and its chlorinated derivatives, 2-chloroanthracene (2-ClAnt) and 9,10-dichloroanthracen (9,10-Cl2Ant), at human-relevant levels on human normal hepatocyte L02 cells. The cell viability test showed no significant effects on the viability of L02 cells exposed to Ant, 2-ClAnt and 9,10-Cl2Ant at doses of 5-500 nM for 24 h. However, based on transcriptomic analysis, Ant, 2-ClAnt and 9,10-Cl2Ant exposure at human-relevant levels obviously perturbed global gene expression in L02 cells and induced the differential expression of several genes related to cancer development. As the number of genes related to cancer development altered by 9,10-Cl2Ant is the largest, 9,10-Cl2Ant posed greater risks of tumor development than Ant and 2-ClAnt did. Metabolomics analysis demonstrated that Ant, 2-ClAnt and 9,10-Cl2Ant caused significant metabolic perturbation in L02 cells. Pathway enrichment analysis indicated that Ant, 2-ClAnt and 9,10-Cl2Ant mainly perturbed the lipid metabolism and nucleotide metabolism pathway. However, 9,10-Cl2Ant caused a wider perturbation to metabolic pathways than Ant and 2-ClAnt did. In addition, dysregulation of nucleotide metabolism perturbed by Ant, 2-ClAnt and 9,10-Cl2Ant may be associated with the genomic instability and further carcinogenesis.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Transcriptoma , Antracenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hepatócitos , Metabolômica , Nucleotídeos
11.
Se Pu ; 41(9): 814-820, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712546

RESUMO

Oil is a primary source of energy worldwide. However, the use of oil produces large amounts of pollutants, which are detrimental to the environment. The presence of petroleum hydrocarbons in soil is a critical marker of environmental pollution and safety. Rapid on-site detection technology has been broadly used in emergency tracking, offering critical information support for effective reactions to environmental emergencies. Thus, it is expected to play an increasingly critical role in environmental remediation efforts. The current approach for petroleum hydrocarbon detection in soil mainly involves Soxhlet extraction with a combination of solvents, including acetone and n-hexane. The samples are then analyzed after rotary evaporation, dehydration with anhydrous sodium sulfate, and purification using a magnesium silica-type adsorbent. Unfortunately, this approach requires sample analysis to be performed in the laboratory, which is tedious and time consuming, and consumes large amounts of solvents. Moreover, the rotary evaporator is not portable. Therefore, this method is not appropriate for the rapid on-site detection of petroleum hydrocarbons. In this study, a rapid on-site detection method based on silica-gel dehydration and cyclohexane extraction was developed for the extraction and pretreatment of petroleum hydrocarbons (C10-C40) in soil. First, an appropriate amount of silica gel was added to the soil, and the mixture was completely ground to eliminate moisture. Next, petroleum hydrocarbons were extracted with 40 mL of cyclohexane, and the extract was cleaned by Florisil solid-phase extraction (SPE) column elution. Finally, the samples were analyzed by gas chromatography (GC) to evaluate the above method. The silica gel exhibited optimal adsorption properties compared with anhydrous sodium sulfate, calcium oxide, and molecular sieves, with recovery of 87.5%. The effects of different soil water content (5%, 10%, and 20%) and silica gel (1, 3, 5, and 10 times the moisture content) dosage on the extraction of petroleum hydrocarbons were investigated. The recoveries of petroleum hydrocarbons increased from 74.0% to 103.8% after 15 min of invasive extraction (relative standard deviation, RSD, <10.1%) when silica gel amounting to 10 times the moisture content was used. Five types of silica gels with different properties were purchased from four manufacturers, and the effects of these silica gels on the dehydration and extraction efficiency of petroleum hydrocarbons in soil were assessed. The results showed that amorphous silica gel led to low recoveries (<60%), spherical silica gel achieved extraction efficiencies of approximately 70%-90%, and alkaline silica gel produced recoveries with poor precision. Therefore, neutral spherical silica gel was used for further experiments. The fingerprints of petroleum hydrocarbons with different carbon numbers are an important reference for identifying pollution sources. Thus, ensuring good recoveries throughout the entire carbon range is necessary to ensure the accuracy of the fingerprint analysis results. The proposed method showed good recoveries for petroleum hydrocarbons of all carbon numbers (75%-101%). The findings above indicate that the developed method could be an efficient means to extract petroleum hydrocarbons from soil for both total quantity and fingerprint analyses. Compared with standard methods, the proposed method requires lower solvent dosages and features simpler processing steps. Another advantage of this method is that it does not require the use of highly toxic halogenated solvents; thus, it does not contribute to environmental pollution. It can be applied to the laboratory analysis of soil petroleum hydrocarbons and coupled with other rapid on-site detection techniques for soil petroleum hydrocarbons, such as infrared spectroscopy and portable GC. However, because it does not include a concentration process, the developed method exhibits relatively low sensitivity. In the future, we plan to develop a simple and flexible on-site sample-concentration system to further improve various indicators of this method.

12.
J Transl Med ; 21(1): 665, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752518

RESUMO

Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Apoptose , Autofagia , Carcinogênese , Proteases Específicas de Ubiquitina , Microambiente Tumoral , Ubiquitina Tiolesterase
13.
Biosens Bioelectron ; 240: 115643, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651949

RESUMO

As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Reprodutibilidade dos Testes , Titânio , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Água
14.
Se Pu ; 41(8): 698-706, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37534557

RESUMO

Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) have attracted significant attention because of their persistence, biotoxicity, bioaccumulation, and long-range migration. Given their worldwide detection in a variety of environmental matrices, concerns related to the high exposure risks of SCCPs and MCCPs to humans have grown. Thus, knowledge of the contamination patterns of SCCPs and MCCPs and their distribution characteristics in the vivo exposure of humans is of great importance. However, little information is available on the contamination of SCCPs and MCCPs in human blood/plasma/serum, mainly because of the difficulty of sample preparation and quantitative analysis. In this study, a new blood sample pretreatment method based on Percoll discontinuous density gradient centrifugation was developed to separate plasma, red blood cells, white blood cells, and platelets from human whole blood. A series of Percoll sodium chloride buffer solutions with mass concentrations of 1.095, 1.077, and 1.060 g/mL were placed in a centrifuge tube from top to bottom to establish discontinuous density gradients. The dosage for each density gradient was 1.5 mL. Human whole blood samples mixed with 0.85% sodium chloride aqueous solution were then added to the top layer of the Percoll sodium chloride solution. After centrifugation, the whole blood was separated into four components. The plasma was located at the top layer of the centrifuge tube, whereas the platelets, white blood cells, and red blood cells were retained at the junction of the various Percoll sodium chloride solutions. The sampling volume of human whole blood and incubation time were optimized, and results indicated that an excessively long incubation time could lead to hemolysis, resulting in a decrease in the recoveries of SCCPs and MCCPs. Therefore, a sampling volume of 1.5 mL and incubation time of 10 min at 4 ℃ were adopted. The cells of the blood components were further broken and extracted by ultrasonic pretreatment, followed by multilayer silica gel column chromatography for lipid removal. The use of 80 mL of n-hexane-dichloromethane (1∶1, v/v) and 50 mL of dichloromethane as the elution solvents (collected together) for the gel column separated the SCCPs and MCCPs from the lipid molecules in the blood samples. Gas chromatography-electron capture negative ion-low resolution mass spectrometry (GC-ECNI-LRMS) was used to determine the SCCPs and MCCPs. Quantification using the corrected total response factor with degrees of chlorination was achieved with linear corrections (R2=0.912 and 0.929 for the SCCPs and MCCPs, respectively). The method detection limits (MDLs) for the SCCPs and MCCPs were 1.57 and 8.29 ng/g wet weight (ww, n=7), respectively. The extraction internal standard recoveries were 67.0%-126.6% for the SCCPs and 69.5%-120.5% for the MCCPs. The developed method was applied to determine SCCPs and MCCPs in actual human whole blood samples. The contents of SCCPs and MCCPs were 10.81-65.23 and 31.82-105.65 ng/g (ww), respectively. Red blood cells exhibited the highest contents of CPs, followed by plasma, white blood cells, and platelets. The proportions of SCCPs and MCCPs in red blood cells and plasma were 70% and 66%, respectively. In all four components, the MCCP contents were higher than the SCCP contents, and the ratios of MCCPs to SCCPs ranged from 1.04 to 3.78. Similar congener patterns of SCCPs and MCCPs were found in the four components of human whole blood. C10-CPs and C14-CPs were predominantly observed in the SCCPs and MCCPs, respectively. In summary, a simple and efficient method was proposed to determine low concentrations of SCCPs and MCCPs in human blood with high sensitivity and selectivity. This method can meet requirements for the quantitative analysis of SCCPs and MCCPs in human blood components, thereby providing technical support for human health risk assessment.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/análise , Cloreto de Metileno/análise , Hidrocarbonetos Clorados/análise , Elétrons , Cloreto de Sódio/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos , China
15.
Toxics ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37505524

RESUMO

Chlorinated paraffins (CPs), a class of complex mixtures synthesized from polychlorinated n-alkanes, are widely used as flame retardants, plasticizers, lubricant additives, coolants, metalworking cutting fluids, and sealants. This study investigated the spatial distribution, the potential pollution sources, and ecological risk of 24 short-chain CPs (SCCPs) and 24 medium-chain CPs (MCCPs) from 29 surface marine sediment samples from the East China Sea and Yellow Sea in September 2019. All of the 48 CPs were detected. The concentrations of SCCPs and MCCPs ranged from 0.703 to 13.4 ng/g dw and 0.0936 to 4.19 ng/g dw, respectively. C10 congeners showed the highest abundancy. The median concentrations of the SCCPs and MCCPs declined gradually with carbon atoms and chlorine atoms, except for Cl5 congeners. Spatial variations showed that all CP congeners in the East China Sea were larger than in the Yellow Sea and displayed a point-source-type distribution, which is consistent with the industrial park distribution. Although the potential ecological risk was at a relatively low level, bioaccumulation and trophic magnification could amplify the risk to marine organisms. Our results provide data support and theoretical assistance for SCCP and MCCP pollution control and sewage outlets in the East China Sea and Yellow Sea.

16.
Environ Int ; 178: 108020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354881

RESUMO

Chlorinated paraffins (CPs), a group of chlorinated alkane mixtures, are frequently detected in various environmental matrices and human bodies. Recently, CPs have garnered considerable attention owing to their potential to induce health hazards in wildlife and human. Several reviews have discussed short-chain CPs (SCCPs) induced ecological risk; however, a comprehensive understanding of the underlying toxic mechanisms and a comparison among SCCPs, medium-, and long-chain CPs (MCCPs and LCCPs, respectively) are yet to be established. This review summarizes the latest research progress on the toxic effects and the underlying molecular mechanisms of CPs. The main toxicity mechanisms of CPs include activation of several receptors, oxidative stress, disturbance of energy metabolism, and inhibition of gap junction-mediated communication. The sensitivity of different species to CP-mediated toxicities varies markedly, with aquatic organisms exhibiting the highest sensitivity to CP-induced toxicity. The toxicity comparison analysis indicated that MCCPs may be unsafe as potential substitutes for SCCPs.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/toxicidade , Parafina/análise , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental , China
17.
Sci Total Environ ; 875: 162657, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878301

RESUMO

Water-soluble organic matter (WSOM), as a group of ubiquitous components in atmospheric PM, plays a crucial role in global climate change and carbon cycle. In this study, the size-resolved molecular characterization of WSOM in the range of 0.010-18 µm PM was studied to gain insights into their formation processes. The CHO, CHNO, CHOS, CHNOS compounds were identified by the ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry in ESI source mode. A bimodal pattern of the PM mass concentrations was found in the accumulation and coarse mode. The increasing mass concentration of PM was mainly attributed to the growth of large-size PM with the occurrence of haze. Both Aiken-mode (70.5-75.6 %) and coarse-mode (81.7-87.9 %) particles were proven the main carriers of the CHO compounds, the majority of which were indicated to be the saturated fatty acids and their oxidized derivatives. The S-containing (CHOS and CHNOS) compounds in accumulation-mode (71.5-80.9 %) increased significantly in hazy days, where organosulfates (C11H20O6S, C12H22O7S) and nitrooxy-organosulfates (C9H19NO8S, C9H17NO8S) were confirmed in majority. The S-containing compounds in accumulation-mode particle with high oxygen content (6-8 oxygen atoms), unsaturation degree (DBE < 4), and reactivity could facilitate the particle agglomeration and accelerate the haze formation.

18.
Environ Sci Technol ; 57(8): 3095-3103, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36799869

RESUMO

Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.


Assuntos
Hidrocarbonetos Clorados , Parafina , Parafina/análise , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental , Plastificantes , Fracionamento Químico , China
19.
BMC Public Health ; 23(1): 24, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604631

RESUMO

BACKGROUND: Both depression and anxiety are worldwide burden that is not being abated with our current knowledge and treatment of the condition. Numerous clinical trials have supported that physical activity (PA) can reduce the depression and anxiety in adolescents, but little is known about its mechanism of action. Therefore, the study objectives were to explore the potential relationship between physical activity and depression and anxiety from the perspective of body image and body mass index (BMI), and to provide an important reference for future self-esteem education and health promotion intervention. METHODS: The participants in this study were 251 Chinese college students between 17 and 22 years old. Participants completed the International Physical Activity Questionnaire-Short Form (IPAQ-SF), the Body Image Questionnaire (BIQ), the Self-rating Depression Scale (SDS) and the Self-rating Anxiety Scale (SAS). A descriptive and correlational approach was used, using the PROCESS macro for Statistical Package for the Social Sciences (SPSS). RESULTS: (1) Physical activity was significantly negatively correlated with both depression and anxiety (t = -0.216, p < 0.001; t = -0.184, p < 0.01). (2) Body image had a significant moderating effect on the relationship between physical activity and anxiety among college students, but there was no moderating effect between depression and physical activity. BMI has no moderating effect on the two interrelationships. CONCLUSION: There is only body image that moderates the relationship between anxiety and physical activity.


Assuntos
Imagem Corporal , COVID-19 , Adolescente , Humanos , Adulto Jovem , Adulto , Índice de Massa Corporal , Depressão/epidemiologia , Pandemias , COVID-19/epidemiologia , Ansiedade/epidemiologia , Exercício Físico , Estudantes
20.
Environ Sci Pollut Res Int ; 30(16): 46355-46367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36717415

RESUMO

Rare earth elements (REEs) are considered environmental pollutants that have received extensive attention recently. The accumulation of REEs in plants is important because REEs can eventually enter the human body via the food chain. Marigolds are widely utilized as medicinal and commercial plants in medicine, feed, and therapeutics. Due to the extremely high demand for marigold in global, it is urgent to investigate the accumulation and distribution of REEs in marigold plants to reduce human and animal health risks. Marigold leaves tended to bioaccumulate the highest amounts of REEs from soil compared with other tissues. The distribution patterns of REEs in marigold were similar to those in the rhizosphere soil, which was enriched in light rare earth elements. Cerium accumulated most in marigold and soil, accounting for nearly 50% of ΣREEs, followed by lanthanum, neodymium, and yttrium. Roots were the most susceptible tissue affected by soil REE concentration, and a significant positive correlation was observed for REEs in the roots of marigold and soils (R = 0.87), while no significant correlation was observed for REEs in soils and other tissues. REEs were poorly transferred from soil to marigold, with bioaccumulation factor values for all tissues of marigold less than one. Additionally, REEs exhibited a positive correlation with Al and Fe in the roots, stems, leaves, and flowers of marigold. The present research revealed the biological interactions between marigold and soil and the distribution of REEs in various parts of marigold. It provides a reference for large-scale commercial cultivation and potential environmental risk in the future.


Assuntos
Calendula , Cério , Metais Terras Raras , Poluentes do Solo , Tagetes , Animais , Humanos , Solo , Metais Terras Raras/análise , Lantânio , Plantas , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...